Borne sup, limites et comparaisons de suites

Partie 1: Borne sup et borne inf:

Exercice 1.

Déterminer (s'ils existent) les bornes supérieures, bornes inférieures, plus grands ou plus petits éléments des ensembles ou familles ci-dessous :

- 1. Les ensembles $A =]-1,2], B =]-\infty, -\sqrt{2}[\cup]3, 4[\cup\{7\} \text{ et } C = \mathbb{R}_+^*.$
- 2. Les familles $\left((-1)^n + \frac{1}{n}\right)_{n \in \mathbb{N}^*}$ et $\left(2^{(-1)^n n}\right)_{n \in \mathbb{N}}$.

Exercice 2.

Pour tout $(m, n) \in \mathbb{N}^* \times \mathbb{N}^*$, on pose $u_{m,n} = 1/m + 1/n$, et on note $U = \{u_{m,n}; (m, n) \in \mathbb{N}^* \times \mathbb{N}^*\}$. Calculer sup U et inf U.

Exercice 3.

Soit $A = \{E(x) + E(\frac{1}{x}) ; x \in \mathbb{R}_+^* \}$. Étudier inf A et sup A.

Exercice 4.

Soient A et B deux parties non vides et majorées de \mathbb{R} .

- 1. Démontrer que, si $A \subset B$ alors sup $A \leq \sup B$.
- 2. Déterminer $\sup(A \cup B)$ en fonction de $\sup A$ et $\sup B$.
- 3. On suppose $A \cap B$ non vide. Comparer $\sup(A \cap B)$ avec $\sup A$ et $\sup B$.

Exercice 5.

Soient I et J des intervalles de \mathbb{R} non vides. Démontrer qu'une condition suffisante pour que $I \cup J$ soit un intervalle est que $I \cap J \neq \emptyset$. Cette condition est-elle nécessaire?

Partie 2 : Convergence de suites :

Exercice 6.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que :

$$\forall n \in \mathbb{N}, \ u_n \in \mathbb{Z}.$$

Montrer que (u_n) converge si et seulement si elle est stationnaire.

Exercice 7.

Étudier la convergence des suites suivantes, et donner leurs limites éventuelles :

a)
$$u_n = \frac{n + (-1)^n}{n - (-1)^n}$$
; b) $u_n = \frac{2^n + 3^n}{2^n - 3^n}$; c) $u_n = \frac{\sin n}{n^{\alpha}} (\alpha > 0)$; d) $u_n = \frac{E[nx]}{n}$; e) $u_n = \sqrt{n + 1} - \sqrt{n}$.

Exercice 8.

Les affirmations suivantes sont-elles vraies ou fausses? On justifiera les réponses par une preuve ou un contre-exemple :

- 1. "Si (u_n) est une suite telle que (u_n^2) converge. Alors la suite (u_n) converge"
- 2. " On suppose de plus que (u_n) est à termes positifs. Alors la suite (u_n) converge. "
- 3. "Soit (a_n) une suite bornée et (ε_n) une suite convergeant vers 0. Alors la suite de terme général $u_n = \varepsilon_n a_n$ converge vers 0."
- 4. "Si (u_n) converge, alors $u_{n+1} u_n \to 0$?"
- 5. " Si $u_{n+1} u_n \to 0$ alors (u_n) converge. "
- 6. " Si $u_n \sim v_n$ alors $u_n v_n \to 0$ " (on rappelle que $u_n \sim v_n$ s'il existe une suite (ε_n) convergeant vers 0 telle qu'on puisse écrire $u_n = v_n(1 + \varepsilon_n)$).
- 7. " Si $u_n v_n \to 0$ alors $u_n \sim v_n$."
- 8. "Si (u_n) et (v_n) convergent et si $u_n \leq w_n \leq v_n$ alors (w_n) converge."
- 9. " Si (u_n) est une suite de réels strictement positifs et tend vers zéro, alors (u_n) est décroissante à partir d'un certain rang."

Exercice 9.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par la relation suivante :

$$u_{n+2} = \frac{1}{2} \left(u_{n+1} + u_n \right)$$

pour tout $n \ge 0$, avec $u_0 = 0$ et $u_1 = 1$. On pose $w_n = u_n - u_{n-1}$ pour tout entier $n \ge 1$.

- 1. Montrer que $u_n = \sum_{k=1}^n w_k$ pour tout entier $n \ge 1$.
- 2. Montrer que $(w_n)_{n\in\mathbb{N}}$ est une suite géométrique.
- 3. En déduire que $(u_n)_{n\in\mathbb{N}}$ est une suite convergente et calculer sa limite.

Exercice 10.

Déterminer toutes les suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que :

- 1. $u_0 = 0, u_1 = 1$ et $\forall n \in \mathbb{N}, u_{n+2} = 5u_{n+1} 3u_n$.
- 2. $u_0 = 1, u_1 = -1$ et $\forall n \in \mathbb{N}, 2u_{n+2} = u_{n+1} u_n$.
- 3. $u_0 = -3, u_1 = 4$ et $\forall n \in \mathbb{N}, 4u_{n+2} = 12u_{n+1} 9u_n$.
- 4. $u_0 = 1, u_1 = 2 \text{ et } \forall n \in \mathbb{N}, u_{n+2} = \frac{u_{n+1}^6}{u_n^5}$.

Exercice 11.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Démontrer que, si les suites extraites de (u_n) : $(u_{3n}), (u_{3n+1})$ et (u_{3n+2}) ont toutes la même limite $\ell \in \overline{\mathbb{R}}$, alors la suite (u_n) admet aussi ℓ pour limite.

Exercice 12.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que ses suites extraites $(u_{2n}), (u_{2n+1})$ et (u_{3n}) convergent. Montrer que la suite (u_n) est convergente.

Exercice 13.

Montrer que toute suite périodique convergente est constante.

Exercice 14.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que :

$$\forall (m,n) \in (\mathbb{N}^*)^2, \quad 0 \le u_{m+n} \le \frac{m+n}{mn}.$$

Montrer que (u_n) converge vers 0.

Exercice 15. * (Théorème de Césaro)

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle convergente vers $\ell\in\mathbb{R}$. Montrer que la suite $(S_n)_{n\in\mathbb{N}}$, avec $S_n=\frac{1}{n+1}\sum_{k=0}^n u_k$, converge aussi vers ℓ .
- 2. La réciproque est-elle vraie?

Exercice 16.

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ des suites réelles telles que :

$$\forall n \in \mathbb{N}, \ u_n \leq v_n.$$

On suppose aussi que (u_n) est croissante et que (v_n) converge vers $\ell \in \mathbb{R}$. A-t-on : $\forall n \in \mathbb{N}, \ u_n \leq \ell$? La suite (u_n) converge-t-elle vers ℓ ?

Exercice 17. (Moyenne arithmético-géométrique)

Soient a et b deux réels tels que 0 < a < b et soient les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ définies par

$$\left\{ \begin{array}{rcl} u_0 & = & a \\ \forall n \in \mathbb{N}, & u_{n+1} & = & \sqrt{u_n v_n} \end{array} \right. \left\{ \begin{array}{rcl} v_0 & = & b \\ \forall n \in \mathbb{N}, & v_{n+1} & = & \frac{u_n + v_n}{2} \end{array} \right.$$

Montrer que les suites (u_n) et (v_n) sont adjacentes et que leur limite commune qu'on note L(a,b) vérifie :

$$\sqrt{ab} \le L(a,b) \le \frac{a+b}{2}.$$

3

Partie 3 : Comparaisons de suites

Exercice 18.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On suppose que $u_{n+1} \sim u_n$ quand n tend vers $+\infty$. Est-ce que $u_{2n} \sim u_n$ quand n tend vers $+\infty$?

Exercice 19.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et ℓ un réel. On suppose que $u_n \sim \ell$ quand n tend vers $+\infty$. Est-ce que $u_n^n \sim \ell^n$ quand n tend vers $+\infty$?

Exercice 20.

Déterminer la limite de la suite (u_n) définie par : $\forall n \in \mathbb{N}^*, \ u_n = (\cos \frac{1}{n})^{n^2}$.

Exercice 21.

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ des suites réelles de limites nulles. Démontrer que :

$$e^{u_n} - e^{v_n} \sim u_n - v_n.$$

Exercice 22.

Déterminer la limite de la suite (u_n) définie par : $\forall n \in \mathbb{N}^*, \ u_n = n^2(e^{1/n} - e^{1/(n+1)}).$

Exercice 23.

Déterminer un équivalent quand n tend vers $+\infty$ des trois suites suivantes :

$$u_n = \ln\left(\cos\left(\frac{\pi}{n}\right)\right) + e^{\tan\left(\frac{\pi}{n^2}\right)} - 1$$

$$v_n = e^{\arccos\left(\frac{1}{n}\right)} - e^{\frac{\pi}{2}}\cos\left(\frac{1}{\sqrt{n}}\right)$$
 $w_n = \ln\left(\cos\left(\frac{\pi}{n}\right)\right) + \tan\left(\sinh\left(\frac{1}{n}\right)\right)$

Exercice 24.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $u_0\in]0,1[$ et : $\forall n\in\mathbb{N},\ u_{n+1}=\frac{1}{2}(1+u_n^2).$

- 1. Démontrer que la suite (u_n) est convergente et préciser sa limite ℓ .
- 2. * En déduire la limite de la suite $\left(\frac{1}{u_{n+1}-\ell}-\frac{1}{u_n-\ell}\right)_{n\in\mathbb{N}}$ puis un équivalent de $u_n-\ell$ quand n tend vers $+\infty$.

4