Devoir surveillé 4

Consignes:

- Calculatrice interdite.
- Une copie double est obligatoire en première copie. Les suivantes peuvent être simples, en particulier pour les exercices courts.
- Ne mélanger pas les exercices, une nouvelle copie pour chaque exercice. Le deuxième exercice sur une copie, s'il n'est pas corrigé, ne pourra pas faire l'objet de réclamations.
- Mettre son nom sur chaque feuille.
- Numéroter chaque copie sous la forme [numéro de copie/ nombre total de copies].
- Encadrer les résultats.
- Les phrases d'explications courtes et claires avant tout calcul peut permettre de gagner des points.
- Les copies dont la propreté et la présentation laissent à désirer seront sanctionnées (Les ratures et les plaques de blanc correcteur sont à bannir).

Exercice 1.

1. Déterminer des équivalents les plus simples possibles des expressions suivantes aux points indiqués :

(a)
$$\sqrt{\ln(x)} - 2\sqrt{\ln(x) + 1} + \sqrt{\ln(x) + 2}$$
 en $x = +\infty$.

(b)
$$\cos\left(\frac{1}{x}\right)^x - \cosh\left(\frac{1}{x}\right)^{-x}$$
 en $x = +\infty$.

2. On considère la fonction $f_{a,b}$ définie au voisinage de 0 pour $(a,b) \in \mathbb{R}^2$ par

$$f_{a,b}(x) = \frac{1+ax}{1+bx} - e^x.$$

Déterminer pour quelle(s) valeur(s) du couple (a,b), la fonction $f_{a,b}$ « tend vers 0 le plus vite en 0 » . (C'est-dire le premier terme non nul du développement limité de $f_{a,b}$ est d'ordre maximal). On donnera pour ce (ou ces couples) un équivalent de $f_{a,b}(x)$ en x=0.

Exercice 2. On définit la fonction la fonction tangente hyperbolique notée the par th $(x) = \frac{\sinh(x)}{\cosh(x)}$. On définit la fonction f par $f(x) = x \sinh(\frac{1}{x})$.

- 1. Quelques résultats sur la fonction th
 - (a) Déterminer l'ensemble de définition de la fonction th.
 - (b) Calculer un développement limité d'ordre 3 en 0 de la fonction th.
- 2. Déterminer l'ensemble définition et étudier la parité de f.
- 3. Montrer que la dérivée de f peut se mettre sous la forme

$$f'(x) = \left[\operatorname{th} \left(\frac{1}{x} \right) - \frac{1}{x} \right] \operatorname{ch} \left(\frac{1}{x} \right).$$

4. Montrer que

$$\forall x \in \mathbb{R}^+, \quad \text{th}(x) \le x.$$

- 5. Etudier les variations de la fonction f.
- 6. Tracer la courbe de f.
- 7. Montrer que f admet un développement asymptotique en $+\infty$ de la forme

$$f(x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{a_3}{x^3} + \frac{a_4}{x^4} + \underset{x \to +\infty}{o} \left(\frac{1}{x^4}\right),$$

où les valeurs de a_0, a_1, a_2, a_3, a_4 sont à préciser. Justifier que ce développement reste valable en $x = -\infty$.

- 8. Déterminer un équivalent simple de f'(x) en $x = +\infty$, puis en $x = -\infty$.
- 9. On définit la fonction g sur \mathbb{R}^* par $g(x) = f\left(\frac{1}{x}\right)$. Montrer que g se prolonge en une fonction \tilde{g} continue sur \mathbb{R} .

Exercice 3. Pour $(a,b) \in \mathbb{R}^{+*} \times \mathbb{R}^+$, on considère la suite (u_n) définie pour $n \in \mathbb{N}$ par

$$u_n = \sum_{k=0}^{n} \frac{(-1)^k}{ak+b+1}.$$

Preuve de la convergence.

1. Soient les suites (v_n) et (w_n) définies par $v_n = u_{2n}$ et $w_n = u_{2n+1}$. Montrer que les suites (v_n) et (w_n) convergent.

(On pourra commencer par montrer ques les suites (v_n) et (w_n) sont monotone et bornées)

2. Montrer que la suite (u_n) converge vers une limite $\ell(a,b)$.

Expression intégrale de la limite $\ell(a,b)$

Pour $n \in \mathbb{N}$, on définie la fonction f_n sur]0,1] par

$$f_n(x) = \sum_{k=0}^{n} (-1)^k x^{ak+b}.$$

- 3. Exprimer sous forme condensée $f_n(x)$.
- 4. Exprimer $\int_0^1 f_n(t) dt$ de 2 manières et en déduire

$$u_n = \int_0^1 \frac{t^b}{1+t^a} dt + \int_0^1 g_n(t) dt,$$

où $g_n(t) = -t^b \frac{(-t^a)^{n+1}}{1+t^a}$, puis que

$$\ell(a,b) = \int_0^1 \frac{t^b}{1+t^a} \mathrm{d}t.$$

2

Calculs numériques :

- 6. Calculer les différentes valeurs de $\ell(a,b)$ pour $a\in [1,2]$ et $b\in [0,1]$.
- 7. Calculer $\ell(\frac{1}{3}, 0)$. (On pourra poser un changement de variable.)

Exercice 4. Soit a, b deux fonctions continues de \mathbb{R} dans \mathbb{R} avec a impaire et b paire. Montrer que l'équation différentielle

$$y'(t) + a(t)y(t) = b(t) \quad (E)$$

admet une unique solution impaire.

Exercice 5.

La vitesse de dissolution d'un composé chimique dans l'eau est proportionnelle à la quantité restante. On place 20g de ce composé, et on observe que 5 minutes plus tard, il reste 10g. Combien de temps faut-il encore attendre pour qu'il reste seulement 1g? On donnera un valeur exacte puis une valeur approchée en minutes et secondes.

Table de valeurs numériques :

$$\ln(2) \approx 0.693, \, \ln(3) \approx 1.099, \, \ln(5) \approx 1.609, \, \ln(7) \approx 1.946 \, \text{à} \, 10^{-3}$$

Exercice 6.

Les deux questions sont indépendantes.

1. Soit (G, \cdot) un groupe, pour $x \in G$, on appelle centralisateur de x, l'ensemble des éléments de G qui commutent avec x noté $C_G(x)$.

$$C_G(x) = \{ y \in G \, ; \, xy = yx \} \, .$$

- (a) Soit $x \in G$, montrer que $(C_G(x), \cdot)$ est sous-groupe de (G, \cdot) .
- (b) Un exemple : on considère G le groupe des similitudes directes du plan complexe muni de la loi de composition des applications :

$$G = \{z \mapsto az + b; (a, b) \in \mathbb{C}^* \times \mathbb{C}\}.$$

- i. Soit $\beta \in \mathbb{C}^*$, déterminer $C_G(z \mapsto z + \beta)$.
- ii. Soit $\alpha \in \mathbb{C}^* \setminus \{1\}$, déterminer $C_G(z \mapsto \alpha z)$.
- iii. Avec les hypothèses précédentes, montrer que $C_G(z \mapsto z + \beta)$ et $C_G(z \mapsto \alpha z)$ sont isomorphes à (\mathbb{C}^*, \times) pour l'un et à $(\mathbb{C}, +)$ pour l'autre. On explicitera des isomorphismes de groupes pour le justifier.
- 2. Soient (G, \cdot) un groupe et (S_G, \circ) le groupe des permutations de G (Les bijections de G dans G muni de la loi de composition).

On définit l'application φ de G dans $\mathcal{F}(G,G)$ par $\varphi(a)=(x\mapsto a\cdot x\cdot a^{-1}).$

- (a) Montrer que pour tout $a \in G$, $\varphi(a)$ est un élément de S_G .
- (b) Démontrer que φ est un morphisme de groupes de (G,\cdot) dans (S_G,\circ) .
- (c) Que dire de G, si Ker $\varphi = G$?

Exercice 7. On considère

$$A = \left\{ x \in \mathbb{Q} \, ; \, x = \frac{p}{q} \text{ avec } p \text{ entier et } q \text{ entier impair} \right\}.$$

- 1. Montrer que $(A, +, \times)$ est un anneau. (Lois usuelles)
- 2. Déterminer les inversibles de A.
- 3. Soit $n \in \mathbb{N}$, montrer que $I_n = \{y : y = 2^n x \text{ avec } x \in A\}$ est un idéal de A.
- 4. Soit I un idéal de A non réduit à 0, montrer qu'il existe $n \in \mathbb{N}$ tel que $I = I_n$.