Devoir surveillé 3

Consignes:

- Calculatrice interdite.
- Une copie double est obligatoire en première copie. Les suivantes peuvent être simples, en particulier pour les exercices courts.
- Ne mélanger pas les exercices, une nouvelle copie pour chaque exercice. Le deuxième exercice sur une copie, s'il n'est pas corrigé, ne pourra pas faire l'objet de réclamations.
- Mettre son nom sur chaque feuille.
- Numéroter chaque copie sous la forme [numéro de copie/ nombre total de copies].
- Encadrer les résultats.
- Les phrases d'explications courtes et claires avant tout calcul peut permettre de gagner des points.
- Les copies dont la propreté et la présentation laissent à désirer seront sanctionnées (Les ratures et les plaques de blanc correcteur sont à bannir).

Exercice 1. Soient E et F deux ensembles non vides et f une application de E dans F. Montrer qu'il y a équivalence entre

- (i) f est bijective.
- (ii) $\forall A \in \mathcal{P}(E), f(E \setminus A) = F \setminus f(A).$

Exercice 2.

Pour $n \in \mathbb{N}$, la fonction f_n est définie sur \mathbb{R} par $f_n(t) = \frac{1}{(\operatorname{ch} t)^n}$. On a associe à f_n , F_n sa primitive sur \mathbb{R} qui s'annule en 0.

Si F_n admet une limite finie en $+\infty$, on notera u_n cette limite.

- 1. Exprimer sous forme réduite $F_n(x)$ pour $n \in [0, 2]$. (On pourra faire un changement de variable exponentielle pour n = 2.)
- 2. Déterminer, si elle existe, la valeur de u_n , pour $n \in [0, 2]$.
- 3. En utilisant une intégration par partiessur $F_n(x) F_{n+2}(x)$, montrer que

$$\forall n \in \mathbb{N}, \qquad F_{n+2}(x) = \frac{n}{n+1} F_n(x) + \frac{\sinh x}{(n+1)(\cosh x)^{n+1}}.$$

- 4. Montrer que $\forall n \geq 1$, la fonction F_n admet une limite finie en $+\infty$ et donner une relation de récurrence vérifié par la suite (u_n) .
- 5. Déterminer un développement limité d'ordre 5 en 0 de F_n .

Exercice 3.

1. Déterminer des équivalents les plus simples possibles au point indiqué

(i)
$$\frac{\sin(x)}{\sinh(x)} - 1 \text{ en } x = 0.$$

(ii)
$$e^{\sqrt{3+x}} - e^{2x^2}$$
 en $x = 1$

(iii)
$$x^{(x^x-1)} - 1$$
 en $x = 0$.

2. Comportement asymptotique

On définit la fonction g par $g(x) = \sqrt{x^6 + x^5 + 1} \ln \left(\frac{x-1}{x} \right)$

- (a) Déterminer un équivalent le plus simple possible de g(x) en $+\infty$, on le notera h(x).
- (b) Etudier l'existence d'une droite asymptote en $+\infty$ à la courbe la fonction g-h, si elle existe, on donnera son équation, sinon on donnera un équivalent simple de g(x)-h(x). On comparera les positions des courbes de g et h en $+\infty$.

Exercice 4.

Pour $n \in \mathbb{N}$, on pose

$$u_n = \int_0^1 \frac{x \, \mathrm{d}x}{1 + x^n}$$

- 1. Calculer u_0, u_1, u_2 .
- 2. Montrer que (u_n) est une suite croissante.
- 3. Montrer que

$$u_n = \frac{1}{2} - \int_0^1 \frac{x^{n+1} \, \mathrm{d}x}{1 + x^n}.$$

En déduire que $u_n \xrightarrow[n \to +\infty]{\frac{1}{2}}$.

4. Etablir

$$\forall n \in \mathbb{N}^{\star}, \ \int_{0}^{1} \frac{x^{n+1} dx}{1+x^{n}} = \frac{\ln 2}{n} - \frac{2}{n} \int_{0}^{1} x \ln(1+x^{n}) dx$$

5. Montrer que

$$\lim_{n \to \infty} \int_0^1 x \ln(1 + x^n) \, \mathrm{d}x = 0.$$

2

(On pourra montrer que pour $t \ge 0$, $\ln(1+t) \le t$)

6. En déduire que la suite (v_n) , définie par $v_n = n\left(u_n - \frac{1}{2}\right)$, converge vers une limite à préciser.

Exercice 5. [Quelques équations différentielles]

1. Résoudre sur \mathbb{R}^{+*} l'équation différentielle

$$(t^2 + t)y'(t) + y(t) = \ln(1+t)$$

2. Résoudre sur $\mathbb R$ l'équation différentielle

$$\begin{cases} y'' - 6y' + 5y = \operatorname{ch}(t) \\ y(0) = \frac{1}{24}, \quad y'(0) = 1. \end{cases}$$

3. On cherche à déterminer toutes les fonctions f dérivables sur \mathbb{R} à valeurs dans \mathbb{R} , tel que

$$\forall x \in \mathbb{R}, \qquad f'(x) = f(\pi - x).$$

- (a) Soit une fonction f solution du problème, montrer que f vérifie une équation différentielle d'ordre 2.
- (b) Résoudre l'équation différentielle obtenue à la question précédente.
- (c) Conclure.

Exercice 6. **

Soit la fonction f la fonction définie sur \mathbb{R}^{+*} par

$$f(x) = x + \ln(x)$$

- 1. Justifier que f définie une bijection de \mathbb{R}^{+*} dans \mathbb{R} .
- 2. Justifier que la fonction f^{-1} a pour limite $+\infty$ en $+\infty$.
- 3. En considérant de deux manière $f(f^{-1}(x))$ déterminer un équivalent le plus simple possible de $f^{-1}(x)$ en $x = +\infty$ que l'on notera $\tilde{g}(x)$.
- 4. En écrivant $f^{-1}(x) = \tilde{f}(x) + u(x)$, où $u(x) = f^{-1}(x) \tilde{g}(x)$. Déterminer un équivalent le plus simple possible de u(x) en $x = +\infty$ que l'on notera $\tilde{u}(x)$.
- 5. En écrivant $f(x) = \tilde{f}(x) + \tilde{u}(x) + v(x)$, où $v(x) = f^{-1}(x) \tilde{g}(x) \tilde{u}(x)$. Déterminer un équivalent le plus simple possible de v(x) en $x = +\infty$ que l'on notera $\tilde{v}(x)$.