Devoir à la maison 2

A rendre le mercredi 4 octobre

Exercice 1.

- 1. Montrer que pour tout $x \in \mathbb{R}$, $\arctan(x+1) \arctan(x) = \arctan\left(\frac{1}{x^2 + x + 1}\right)$.
- 2. Montrer que la suite (u_n) définie par $u_n = \sum_{k=0}^n \arctan\left(\frac{1}{k^2 + k + 1}\right)$ converge vers une limite à préciser.

Exercice 2. Soit la fonction f définie sur \mathbb{R} par

$$f(x) = \arctan(x) - 3\arctan(2+x).$$

- 1. Etudier les variations de f. (On calculera les limites)
- 2. Justifier que $|f(0)| > \pi$.
- 3. Tracer la courbe de f.
- 4. Exprimer tan(3x) en fonction de tan(x).
- 5. Résoudre $f(x) = -\pi$.

Exercice 3.

- 1. Donner le tableau de variations et tracer les courbes des fonctions ch et sh.
- 2. Justifier que la fonction ch définie une bijection de \mathbb{R}^+ dans J_1 et la fonction sh définie une bijection de I dans J_2 , où I, J_1 et J_2 sont des parties de \mathbb{R} à préciser, on choisira I maximale. On définit leurs fonctions réciproques notées respectivement argch et argsh.
- 3. Tracer les courbes de argch et argsh sur le même graphe que la question 1.
- 4. Après avoir précisé l'ensemble de définition, simplifier l'expression de la fonction $x \mapsto \operatorname{sh}(\operatorname{argch} x)$. Faire de même avec $x \mapsto \operatorname{ch}(\operatorname{argsh} x)$. (On pourra calculer le carré des expressions)
- 5. Exprimer les dérivées de argch et argsh.
- 6. Soit $y \in \mathbb{R}$, résoudre l'équation ch(x) = y et en déduire une expression logarithmique de $\operatorname{argch}(y)$.
- 7. Soit $y \in \mathbb{R}$, résoudre l'équation sh(x) = y et en déduire une expression logarithmique de argsh(y).
- 8. Dériver les expressions obtenues en 6. et 7., vérifier la cohérence avec 5.