Nombres complexes

Exercice 1. Soient $(\theta, \theta') \in \mathbb{R}^2$, déterminer le module et un argument des complexes $e^{i\theta} + 1$, $e^{i\theta} - 1$ et $e^{i\theta} + e^{i\theta'}$.

Exercice 2. Soit a et b, deux complexes de même module non nul r.

- a) Interpréter géométriquement les conditions $ab = r^2$ puis $ab = -r^2$.
- b) On suppose désormais que $ab \neq r^2$ et $ab \neq -r^2$.
 - (i) Montrer que les complexes

$$z_1 = \frac{a+b}{r^2+ab}$$
 et $z_2 = \frac{a-b}{r^2-ab}$

sont réels.

- (ii) Soient α et β des arguments de a et b (respectivement). Exprimer $z=r\,z_1$ en fonction des cosinus de $\frac{\alpha+\beta}{2}$ et $\frac{\alpha-\beta}{2}$
- (iii) Montrer que $z_1^2 + z_2^2 \ge \frac{1}{r^2}$.
- (iv) Quels sont les cas d'égalité?

Exercice 3. Résoudre dans \mathbb{R}

- 1. $\sin(x) + \cos(x) = 1$.
- $2. \cos(3x) = \sin(2x).$

Exercice 4. Résoudre dans \mathbb{C} l'équation d'inconnue $z:e^z=2j.$

Exercice 5.

- a) Linéariser $\cos(x)^3 \sin(x)^2$.
- b) Calculer

$$\sum_{k=0}^{n} \cos(ky)^3 \sin(ky)^2.$$

Exercice 6. Donner une primitive des applications suivantes :

$$x \to \cos^6(x), x \to \sin^4(x), x \to \cos^3(x)\sin^2(x).$$

Exercice 7. Résoudre sur \mathbb{R}

$$\cos(3x) + \cos(5x) + \cos(7x) + \cos(11x) + \cos(13x) = 0.$$

Exercice 8. Calculer les expressions algébriques des réels $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

(On pourra se ramener à un calcul de racine carrée d'un complexe.)

Exercice 9. Résoudre dans $\mathbb C$ les équations suivantes d'inconnues z:

$$z^2 - 4z + 5 = 0 (1)$$

$$z^2 - (3+i)z + 4 + 3i = 0 (2)$$

$$z^2 - 2\cos(\theta)z + 1 = 0 \text{ où } \theta \text{ est un réel fixé}$$
 (3)

$$z - 2\cos(\theta)z + 1 = 0 \text{ ou } \theta \text{ est un reel fixe}$$

$$z^2 - e^{2i\theta}z + i\sin(\theta)\cos(\theta)e^{2i\theta} = 0 \text{ où } \theta \text{ est un réel fixé}$$
(4)

$$z^2 - 2iz + i\sqrt{3} = 0 \tag{5}$$

$$z^4 + z^2 + 1 = 0 (6)$$

$$\overline{z^7} = \frac{1}{z^3} \tag{7}$$

Exercice 10. Soit $n \in \mathbb{N}^*$, résoudre sur \mathbb{C} l'équation d'inconnue z:

$$(1+iz)^n = (1-iz)^n.$$

Exercice 11. Soit $P(z) = z^6 - 2\cos(\theta)z^3 + 1$.

- a) Résoudre P(z) = 0.
- b) Décomposer P(z) en produit de trinômes du second degré à coefficients réels.

Exercice 12. Déterminer les racines cinquièmes complexes de $\frac{(1+i\sqrt{3})^4}{(1+i)^3}$.

Exercice 13. * Simplifier

$$\prod_{p=2}^{n} \frac{p^3 - 1}{p^3 + 1}.$$

On pensera à utiliser 1, j et j^2 .

Exercice 14. On pose $a = \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right)$. Déterminer une expression simple de chacun des complexes A et B où

$$A = a + a^2 + a^4$$
 et $B = a^3 + a^5 + a^6$

Exercice 15. Soit $n \in \mathbb{N} \setminus \{0,1\}$, calculer le produit des racines $n^{\text{ièmes}}$ de 1.

Exercice 16. Soit $n \in \mathbb{N} \setminus \{0,1\}$, on note pour tout $k \in \{0,\ldots,n-1\}$, $\omega_k = e^{\frac{i2k\pi}{n}}$. Calculer, pour tout $p \in \mathbb{Z}$, la somme :

$$\sum_{k=0}^{n-1} \omega_k^p.$$

Exercice 17. Soit $n \in \mathbb{N}$. Déterminer une expression simple de chacune des sommes suivantes :

1.
$$P = \sum_{k \in \mathbb{N}} (-1)^k \binom{n}{2k}$$
; $I = \sum_{k \in \mathbb{N}} (-1)^k \binom{n}{2k+1}$

2.
$$A = \sum_{k \in \mathbb{N}} \binom{n}{3k}$$
; $B = \sum_{k \in \mathbb{N}} \binom{n}{3k+1}$; $C = \sum_{k \in \mathbb{N}} \binom{n}{3k+2}$.

Exercice 18. Soient $z \in \mathbb{C} \setminus \{-1, 0, 1\}$ et A, A', M, M', P les points d'affixes respectives $1, -1, z, \frac{1}{z}, \frac{1}{2} \left(z + \frac{1}{z}\right)$.

Démontrer que la droite (MM') est une bissectrice de l'angle $(\overrightarrow{PA}, \overrightarrow{PA'})$.

Exercice 19. Soient A, B, C trois points du plan affine euclidien, d'affixes respectives a, b, c.

- 1) Montrer que le triangle ABC est équilatéral direct si et seulement si $a+jb+j^2c=0$.
- 2) En déduire que le triangle ABC est équilatéral si et seulement si :

$$a^{2} + b^{2} + c^{2} - (ab + ac + bc) = 0.$$

Exercice 20.

Caractériser géométriquement les similitudes suivantes et calculer leurs inverses :

(i)
$$z' = (1+i)z + 1$$
.

(ii)
$$z' = (1 - i\sqrt{3})z + \sqrt{3}$$
.

(iii)
$$z' = -z + 3 + i$$
.

(iv)
$$z' = 2z + 3 - i$$
.